
Compile-time Algorithms On
Overload Sets

Alexander Nasonov
alnsn@yandex.ru

ACCU 2005, Oxford, UK

What is overloading? (formal)

13 Overloading [over]
1 When two or more different declarations are specified for a
single name in the same scope, that name is said to be
overloaded. [...]
2 When an overloaded function name is used in a call, which
overloaded function declaration is being referenced is
determined by comparing the types of the arguments at the point
of use with the types of the parameters in the overloaded
declarations that are visible at the point of use. This function
selection process is called overload resolution [...]

What is overloading? (mantra)

a + b ;

What is overloading after all?

● Complex but supposed to be intuitive
Hint: watch mantra

● Best function selection by static types of arguments
Sometimes called static dispatch

● Often used
● Often misused

Mixture with implicit conversions is highly explosive
● Exotic sizeof trick

Most complex trick is in boost::is_base_and_derived

How it can be extended?

● Disable/enable functions selectively
● Analyze signatures at compile-time

Concept check of arguments and return types
● Generate code from an overload set

Multimethods
Finite State Machine

Multimethods

class Shape { /* ... */ };
class Circle : public Shape { /* ... */ };
class Rectangle : public Shape { /* ... */ };

bool has_intersection(Circle&, Circle&);
bool has_intersection(Circle&, Rectangle&);
bool has_intersection(Rectangle&, Circle&);
bool has_intersection(Rectangle&, Rectangle&);
// Non-const references only to save space

Multimethods (continued)

● Each function expects that static type of each
argument is the same as its dynamic type

● They cover functionality of all possible
combinations of concrete shapes

● There is no accept-any-shapes function:
bool has_intersection(Shape&, Shape&);

● There is no language support for generating it
● As a result, extra efforts to generate multiple

dispatch code

What we need?

A tool that can analyze signatures of
overloaded functions and generate

dispatch code

How to get signature by
function name?

template<class R, class T>
void get_signature(R(*)(T))
{
 typedef R(signature)(T);
}

int foo(char);
// char foo(int);

int main()
{
 get_signature(&foo);
}

Problems in red, resolved
issues in blue:

● Signature is available
only inside get_signature
function

● Function foo is not
overloaded

● Ambiguity error if foo was
overloaded

How to get signature by
function name?

#include <boost/mpl/identity.hpp>

template<class R, class T>
boost::mpl::identity<R(T)>
get_signature(R(*)(T));

int foo(char);
// char foo(int);

int main()
{
 // if typeof is available
 typedef typeof(
 get_signature(&foo)
) signature_id;

 typedef signature_id::type
 signature;
}

Problems in red, resolved
issues in blue:

● Signature is available
only inside get_signature
function

● Function foo is not
overloaded

● Ambiguity error if foo was
overloaded

How to get signature by
function name?

#include <boost/mpl/identity.hpp>

template<long N> struct id {};

template<long N, class R, class T>
boost::mpl::identity<R(T)>
get_signature(R(*)(id<N>, T));

int foo(id<1>, char);
char foo(id<2>, int);

int main()
{
 typedef typeof(
 get_signature<1>(&foo)
) signature_id;

 typedef signature_id::type
 signature;
}

Problems in red, resolved
issues in blue:

● Signature is available
only inside get_signature
function

● Function foo is not
overloaded

● Ambiguity error if foo was
overloaded

● New overload set differs
significantly from original
set

Back to original set

struct enable_all {};

template<long N> struct id
{
 // id<N> is constructible
 // from enable_all for any N
 id(enable_all) {}
};

int foo(id<1>, char);
char foo(id<2>, int);

int main()
{
 foo(enable_all(), '1');
 foo(enable_all(), 1);
}

Problems in red, resolved
issues in blue:

● Signature is available
only inside get_signature
function

● Function foo is not
overloaded

● Ambiguity error if foo was
overloaded

● New overload set differs
significantly from original
set

Summary of technique

● First argument id<N> is specially crafted to identify
a function

● All functions are enumerated starting from 1
● Get function signature by id<N>
● At call time, enable_all is passed instead of id<N>

to mimic original overloading rules

Improvements

● Use type instead of function name
● Use const-qualified call-operators to represent an

overload set
● Avoid typeof where possible
● Don't rely on function id
● Support MPL concepts

- id<N> is IntegralConstant
- overload set is Associative Sequence

Example

struct has_intersection
{
 bool operator()(id<1>, Circle&, Circle&) const;
 bool operator()(id<2>, Circle&, Rectangle&) const;
 bool operator()(id<3>, Rectangle&, Circle&) const;
 bool operator()(id<4>, Rectangle&, Rectangle&) const;
};

int main()
{
 Circle c;
 Rectangle r;
 has_intersection()(enable_all(), r, c);
}

overloads::set sequence

● It is MPL sequence that allow viewing an overload
set as a sequence of function types

● MPL Bidirectional Sequence interface
- begin/end, size, empty, front/back
- find/find_if, contains, etc

● MPL Associative Sequence concept
has_key, order, etc

Three forms of overloads::set

// Natural overload set

typedef overloads::set<has_intersection> natural_set;

// Only overloads with ids in range [1, 5)

typedef overloads::set<

 has_intersection, mpl::range_c<int,1,5>

 > range_set;

// Only overloads with selected ids

typedef overloads::set<

 has_intersection

 , mpl::set< id<1>, id<2> >

 > selected_ids_set;

Associative Sequence interface

// mpl::has_key

BOOST_MPL_ASSERT((

 mpl::has_key<

 overloads::set<has_intersection>

 , bool(Circle&,Circle&)

 >

));

// mpl::order

typedef mpl::order<

 overloads::set<has_intersection>

 , bool(Circle&,Circle&)

 >::type order1;

BOOST_MPL_ASSERT((mpl::equal_to<id<1>, order1>));

FSM

Finite State Machine

POAManager life cycle (CORBA)

● Requirements are shown
on FSM diagram

● Often implemented by
hand, without using any
FSM library

Classical approach

● Hand-crafted code to emulate state machine
behavior

● State is a value of special member or combination
of values

● All members are accessible even though some of
them are valid only in specific state

As a result,
● Hard to maintain invariants
● Ensuring appropriate exception safety may become

a serious problem
● Less readable or even messy code

FSM model

● State definitions, event definitions and overload set
of transitions fully define FSM

● Event is a type and may have data
● State is a type and may have data
● Transition is a function that accepts current state

and event and returns new state:
new_state = transition(current_state, event);

● Return type of transition function is always state
● Formal argument 2 of transition function has always

same type as actual argument
Events aren't polymorphic in any sense of word

polymorphism: neither static nor dynamic

FSM model (continued)

● Formal argument 1 of transition function doesn't
necessarily have same type as actual argument,
derived-to-base conversion may be applied

- To group transitions from several states with common
base into one transition

- To keep data common to several states in one place
● Transition is transactional

new_state = transition(current_state, event);

- New state is constructed
- Current state is destroyed (can't fail)
- State is changed to new state (can't fail)

States grouping

States

// State bases:
struct working_ { /* ... */ };
struct paused_ : working_ { /* ... */ };

// States:
struct start_ { /* ... */ };
struct finish_ { /* ... */ };
struct inactive_ { /* ... */ };
struct active_ : working_ { /* ... */ };
struct holding_ : paused_ { /* ... */ };
struct discarding_ : paused_ { /* ... */ };

Transitions

struct transitions
{
 holding_ operator()(id<1>, start_, create_POA_) const;
 active_ operator()(id<2>, paused_, activate_) const;
 holding_ operator()(id<3>, active_, hold_requests_) const;
 discarding_ operator()(id<4>, active_, discard_requests_) const;
 discarding_ operator()(id<5>, holding_, discard_requests_) const;
 holding_ operator()(id<6>, discarding_, hold_requests_) const;
 inactive_ operator()(id<7>, working_, deactivate_) const;
 finish_ operator()(id<8>, inactive_, destroy_) const;
};

FSM interface

int main()
{
 fsm::state_machine<transitions,start_> fsm;

 create_POA_ event;
 fsm.process_event(event);

 if(holding_* pstate = fsm.get_state<holding_>())
 {
 // access pstate data
 }
}

FSM Road map

Getting events out of transitions

template<class Signature>
struct get_event
{
 typedef typename remove_cv<
 typename remove_reference<
 typename function_traits<Signature>::arg2_type
 >::type
 >::type type;
};

// extract_events algorithm:
typedef mpl::copy<
 overloads::set<transitions>
 , mpl::inserter<
 mpl::set<>
 , mpl::insert<_1, get_event<_2> >
 >
 >::type events;

Getting states out of transitions

template<class Signature>
struct get_state
{
 typedef typename remove_cv<
 typename remove_reference<
 typename function_traits<Signature>::result_type
 >::type
 >::type type;
};

// extract_states algorithm:
typedef mpl::copy<
 overloads::set<transitions>
 , mpl::inserter<
 mpl::set<>
 , mpl::insert<_1, get_state<_2> >
 >
 >::type states;

remove_known_states algorithm

template<class InitialStates, class StateSet>
struct remove_known_states
{
 typedef typename mpl::remove_if<
 InitialStates
 , mpl::has_key<StateSet,_1>
 >::type type;
};

typedef remove_known_states<
 mpl::list<start_>
 , states // defined on previous slide
 >::type initial_states;

Transition matrix dimensions

typedef typename mpl::size<events>::type event_count;

typedef typename mpl::plus<
 typename mpl::size<states>::type
 , typename mpl::size<initial_states>::type
 >::type state_count;

transition_fn_ptr matrix[event_count::value]
 [state_count::value];

Accessing transition matrix
elements

// For example: state is holding_, event is activate_

typedef typename mpl::distance<
 typename mpl::begin<events>::type
 , typename mpl::find<events,activate_>::type
 >::type event_index;

// initial_states isn't taken into account,
// it's left as an exercise
typedef typename mpl::distance<
 typename mpl::begin<states>::type
 , typename mpl::find<states,holding_>::type
 >::type state_index;

matrix[event_index::value][state_index::value];

Initialization of transition matrix

● Iterate over transitions
● For each transition find all states that can be

applied to this transition
Implemented in init_transition

● For each such state initialize transition matrix
element
Implemented in init_cell

Iterate over transitions

init_transition init(/* ... */);

mpl::for_each< transitions
 // make a function pointer:
 , add_pointer<_1>
 >(init);

init_transition

// Template parameters are removed for simplicity
struct init_transition
{
 template<class Sig>
 void operator()(Sig*) const
 {
 typedef typename function_traits<Sig>::arg1_type arg1;

 init_cell<typename get_event<Sig>::type> init(/*...*/);

 mpl::for_each<
 mpl::filter_view<states, is_convertible<_1,arg1> >
 , add_pointer<_1>
 >(init);

 // same action for initial_states ...
 }
};

init_cell

// Other template parameters are removed for simplicity
template<class Event>
struct init_cell
{
 template<class State>
 void operator()(State*) const
 {
 // event_index and state_index definitions

 matrix[event_index::value][state_index::value] =
 &transition_entry<Event,State,transition>;
 }
};

FSM Road map

Disadvantages

● Use of id<N> makes it hard to insert/delete an entry
from a set, especially from the beginning

Workaround: use constants to start small groups of
functions and relative shifts

Future: get rid of id<N> completely in next revisions of
C++ standard

● Overload set is as extensible as a class
Some tasks require namespace-like extensibility. For

example, multiple dispatch.

Grouping

struct transitions
{
 enum { G1 = 0 };
 holding_ operator()(id<G1+1>, start_, create_POA_) const;
 active_ operator()(id<G1+2>, paused_, activate_) const;
 holding_ operator()(id<G1+3>, active_, hold_requests_) const;
 discarding_ operator()(id<G1+4>, active_, discard_requests_) const;

 enum { G2 = 4 };
 discarding_ operator()(id<G2+1>, holding_, discard_requests_) const;
 holding_ operator()(id<G2+2>, discarding_, hold_requests_) const;
 inactive_ operator()(id<G2+3>, working_, deactivate_) const;
 finish_ operator()(id<G2+4>, inactive_, destroy_) const;
};

Minimize compilation time

● Use of typeof where possible
● Special unrolling for sets with fixed arity

overloads::set<transitions,fixed_arity>

Conceptually, it's an overload set with one very
common restriction

FSM-specific optimization

● Put transition table generation into separate
translation unit

● Even spread it over several TUs - one TU for one
event or small group of events

● Avoid using get_state directly, better get states or
results of operations on states through visitors. Put
visitation code in a separate TU.

That's it

http://cpp-experiment.sourceforge.net

Questions?

