
Using Block Prefetch for Optimized Memory Performance
Advanced Micro Devices

Mike Wall
Member of Technical Staff
Developer Performance Team

Introduction

In recent years, clock speeds of X86 processors have risen rapidly.
Also, the latest processors can execute several instructions in a
single clock cycle. Without a doubt, today’s mainstream CPUs have
horsepower that was unattainable just a short time ago.

The main performance bottleneck, for many applications, is no longer
processor speed. It is memory bandwidth.

New DRAM memory technologies, such as DDR, have provided an increase in
raw memory bandwidth. How can applications take best advantage of
this increase? One answer is described in this document. It involves
two related ideas: block prefetch, and three phase processing.

Block prefetch is a technique for reading blocks of data from main
memory at very high data rates. Three phase processing is a
programming style that divides data into chunks which are read into
cache using block prefetch, then operated on within the cache, then
results are written out to memory, all with high efficiency.

The techniques are relevant to applications that access large,
localized data objects in system memory, in a sequential or near-
sequential manner. The basis of the techniques is to take best
advantage of the processor’s cache memory.

This document will start with the most basic and useful memory
function: copying a block of data from one area of memory to another.
This will be the vehicle for exploring the main optimization ideas.
Then the ideas will be applied to optimizing a bandwidth-limited
function that uses the FPU to process linear data arrays.

Note: These code samples were run on an AMD AthlonTMXP Processor 1800+
with CAS2 DDR2100 memory, and VIA KT266A chipset. Data sizes were
several megabytes, i.e. much larger than the cache. Exact performance
numbers will be different on other platforms, but the basic techniques
can be widely applicable across the spectrum of current PCs. As with
any optimization project, be sure to benchmark the code on all relevant
platforms, try different code variations to see what works best, and
confirm your results.

 2001 Advanced Micro Devices Inc. 1

The simplest way to copy memory is to use the REP MOVSB instruction.
This is the automatic instruction provided by X86 for memory copy.

 bandwidth: ~620 MB/sec (baseline)

 mov esi, [src] // source array
 mov edi, [dst] // destination array

 mov ecx, [len] // number of QWORDS (8 bytes)
 shl ecx, 3 // convert to byte count

 rep movsb

That’s the starting point. An obvious improvement to try is
increasing the byte copy to a 4-byte copy. REP MOVSD does the job.

 bandwidth: ~640 MB/sec improvement: 3%

 mov esi, [src] // source array
 mov edi, [dst] // destination array

 mov ecx, [len] // number of QWORDS (8 bytes)
 shl ecx, 1 // convert to DWORD count

 rep movsd

That was a little improvement. Now, on modern processors, the REP
MOVS instructions may not be as efficient as an explicit loop which
uses simpler “RISC” instructions. The simple instructions can be
executed in parallel, and sometimes even out-of-order, within the CPU.
So next up is a loop which performs the copy by using MOV instructions.

 bandwidth: ~650 MB/sec improvement: 1.5%

 mov esi, [src] // source array
 mov edi, [dst] // destination array

 mov ecx, [len] // number of QWORDS (8 bytes)
 shl ecx, 1 // convert to DWORD count

copyloop:
 mov eax, dword ptr [esi]
 mov dword ptr [edi], eax
 add esi, 4
 add edi, 4
 dec ecx
 jnz copyloop

 2001 Advanced Micro Devices Inc. 2

The explicit loop was a tiny bit faster than REP MOVSD. Building on
that explicit loop is the next optimization: unrolling the loop. This
reduces the overhead of incrementing the pointers and counter, and
reduces branching. Also, the [Register + Offset] form of addressing
is used, which runs just as fast as the simple [Register] address.
This is an unroll factor of 4X:

 bandwidth: ~640 MB/sec improvement: -1.5%

 mov esi, [src] // source array
 mov edi, [dst] // destination array

 mov ecx, [len] // number of QWORDS (8 bytes)
 shr ecx, 1 // convert to 16-byte size count
 // (assumes len / 16 is an integer)
copyloop:
 mov eax, dword ptr [esi]
 mov dword ptr [edi], eax
 mov ebx, dword ptr [esi+4]
 mov dword ptr [edi+4], ebx
 mov eax, dword ptr [esi+8]
 mov dword ptr [edi+8], eax
 mov ebx, dword ptr [esi+12]
 mov dword ptr [edi+12], ebx
 add esi, 16
 add edi, 16
 dec ecx
 jnz copyloop

It’s not clear why the performance dropped a little when the loop was
unrolled, but there’s good news. The unrolled loop presents an
opportunity to apply another optimization trick: grouping reads
together, and writes together. This can make the CPU’s job easier, by
enabling it to combine small cache data transfers into larger ones.

 bandwidth: ~660 MB/sec improvement: 3%

 mov esi, [src] // source array
 mov edi, [dst] // destination array

 mov ecx, [len] // number of QWORDS (8 bytes)
 shr ecx, 1 // convert to 16-byte size count

copyloop:
 mov eax, dword ptr [esi]
 mov ebx, dword ptr [esi+4]
 mov dword ptr [edi], eax
 mov dword ptr [edi+4], ebx
 mov eax, dword ptr [esi+8]
 mov ebx, dword ptr [esi+12]
 mov dword ptr [edi+8], eax
 mov dword ptr [edi+12], ebx
 add esi, 16
 add edi, 16
 dec ecx
 jnz copyloop

 2001 Advanced Micro Devices Inc. 3

Grouping the read and write operations seemed to help. Grouping can
be taken one step more. The MMX extensions, available on all modern
X86 processors, provide eight large 64-bit registers that are ideal for
this purpose. They permit 64 bytes of sequential reading, followed by
64 bytes of sequential writing.

This example also introduces a biased loop counter, which starts
negative and counts up to zero; this allows the counter to serve double
duty as a pointer, and eliminates the need for a CMP instruction to
terminate the loop.

 bandwidth: ~705 MB/sec improvement: 7%

 mov esi, [src] // source array
 mov edi, [dst] // destination array

 mov ecx, [len] // number of QWORDS (8 bytes)

 lea esi, [esi+ecx*8] // end of source
 lea edi, [edi+ecx*8] // end of destination

 neg ecx // use a negative offset

copyloop:
 movq mm0, qword ptr [esi+ecx*8]
 movq mm1, qword ptr [esi+ecx*8+8]
 movq mm2, qword ptr [esi+ecx*8+16]
 movq mm3, qword ptr [esi+ecx*8+24]
 movq mm4, qword ptr [esi+ecx*8+32]
 movq mm5, qword ptr [esi+ecx*8+40]
 movq mm6, qword ptr [esi+ecx*8+48]
 movq mm7, qword ptr [esi+ecx*8+56]

 movq qword ptr [edi+ecx*8], mm0
 movq qword ptr [edi+ecx*8+8], mm1
 movq qword ptr [edi+ecx*8+16], mm2
 movq qword ptr [edi+ecx*8+24], mm3
 movq qword ptr [edi+ecx*8+32], mm4
 movq qword ptr [edi+ecx*8+40], mm5
 movq qword ptr [edi+ecx*8+48], mm6
 movq qword ptr [edi+ecx*8+56], mm7

 add ecx, 8
 jnz copyloop

 emms // empty the MMX state

 2001 Advanced Micro Devices Inc. 4

Now that the MMXTM registers are being used, the code can employ a very
special instruction: MOVNTQ. This is a streaming store instruction,
for writing data to memory. This instruction bypasses the on-chip
cache, and sends data directly into a write combining buffer. And
because the MOVNTQ allows the CPU to avoid reading the old data from
the memory destination address, MOVNTQ can effectively double the total
write bandwidth. (note that an SFENCE is required after the data is
written, to flush the write buffer)

 bandwidth: ~1130 MB/sec improvement: 60% !!

 mov esi, [src] // source array
 mov edi, [dst] // destination array

 mov ecx, [len] // number of QWORDS (8 bytes)

 lea esi, [esi+ecx*8]
 lea edi, [edi+ecx*8]

 neg ecx

copyloop:
 movq mm0, qword ptr [esi+ecx*8]
 movq mm1, qword ptr [esi+ecx*8+8]
 movq mm2, qword ptr [esi+ecx*8+16]
 movq mm3, qword ptr [esi+ecx*8+24]
 movq mm4, qword ptr [esi+ecx*8+32]
 movq mm5, qword ptr [esi+ecx*8+40]
 movq mm6, qword ptr [esi+ecx*8+48]
 movq mm7, qword ptr [esi+ecx*8+56]

 movntq qword ptr [edi+ecx*8], mm0
 movntq qword ptr [edi+ecx*8+8], mm1
 movntq qword ptr [edi+ecx*8+16], mm2
 movntq qword ptr [edi+ecx*8+24], mm3
 movntq qword ptr [edi+ecx*8+32], mm4
 movntq qword ptr [edi+ecx*8+40], mm5
 movntq qword ptr [edi+ecx*8+48], mm6
 movntq qword ptr [edi+ecx*8+56], mm7

 add ecx, 8
 jnz copyloop

 sfence
 emms

 2001 Advanced Micro Devices Inc. 5

The MOVNTQ instruction dramatically improved the speed of writing the
data. Next is a faster way to read the data: a prefetch instruction.
Prefetch can’t increase the total read bandwidth, but it can get the
processor started on reading the data before it’s actually needed. If
prefetch does its job, then the data will already be sitting in the
cache when it’s actually needed.

The automatic data prefetch function, sometimes called “hardware
prefetch”, can help also. In fact, it’s already helping the
performance here. Hardware prefetch detects sequential ascending
memory access patterns, and automatically initiates a read request for
the next cache line. But in highly optimized code like this example, a
carefully adjusted software prefetch instruction can often improve read
bandwidth even more than the hardware prefetch alone.

 bandwidth: ~1240 MB/sec improvement: 10% !

 mov esi, [src] // source array
 mov edi, [dst] // destination array

 mov ecx, [len] // number of QWORDS (8 bytes)

 lea esi, [esi+ecx*8]
 lea edi, [edi+ecx*8]

 neg ecx

copyloop:

 prefetchnta [esi+ecx*8 + 512] // fetch ahead by 512 bytes

 movq mm0, qword ptr [esi+ecx*8]
 movq mm1, qword ptr [esi+ecx*8+8]
 movq mm2, qword ptr [esi+ecx*8+16]
 movq mm3, qword ptr [esi+ecx*8+24]
 movq mm4, qword ptr [esi+ecx*8+32]
 movq mm5, qword ptr [esi+ecx*8+40]
 movq mm6, qword ptr [esi+ecx*8+48]
 movq mm7, qword ptr [esi+ecx*8+56]

 movntq qword ptr [edi+ecx*8], mm0
 movntq qword ptr [edi+ecx*8+8], mm1
 movntq qword ptr [edi+ecx*8+16], mm2
 movntq qword ptr [edi+ecx*8+24], mm3
 movntq qword ptr [edi+ecx*8+32], mm4
 movntq qword ptr [edi+ecx*8+40], mm5
 movntq qword ptr [edi+ecx*8+48], mm6
 movntq qword ptr [edi+ecx*8+56], mm7

 add ecx, 8
 jnz copyloop

 sfence
 emms

 2001 Advanced Micro Devices Inc. 6

Prefetch is clearly helping. At this point, a subtle but important
variation on the theme can be used. It is called Block Prefetch. In
previous examples, grouping reads together gave a boost to performance.
Block prefetch is an extreme extension of this idea. The strategy is to
read a large stream of sequential data into the cache, without any
interruptions.

Significantly, the MOV instruction is used, rather than the software
prefetch instruction. Unlike a prefetch instruction, which is
officially only a “hint” to the processor, a MOV instruction cannot be
ignored and must be executed in-order. The result is that the memory
system reads sequential, back-to-back address blocks, which yields the
fastest memory read bandwidth.

Because the processor always loads an entire cache line (e.g. 64 bytes)
whenever it accesses main memory, the prefetch loop only needs to read
ONE address per cache line. Reading just one address per cache line
reduces pressure on the internal load/store queue, and is an important
part of achieving maximum read performance in this extreme case.

One additional trick is to read the cache lines in descending address
order, rather than ascending order. This can improve performance a
bit, by keeping the processor’s hardware prefetcher from issuing any
redundant read requests.

 bandwidth: ~1976 MB/sec improvement: 59% ! (up 300% vs. baseline)

#define CACHEBLOCK 400h // number of QWORDs in a chunk

 mov esi, [src] // source array
 mov edi, [dst] // destination array

 mov ecx, [len] // total number of QWORDS (8 bytes)
 // (assumes len / CACHEBLOCK = integer)

 lea esi, [esi+ecx*8]
 lea edi, [edi+ecx*8]

 neg ecx

mainloop:

 mov eax, CACHEBLOCK / 16 // note: prefetch loop is unrolled 2X
 add ecx, CACHEBLOCK // move up to end of block
prefetchloop:
 mov ebx, [esi+ecx*8-64] // read one address in this cache line...
 mov ebx, [esi+ecx*8-128] // ... and one in the previous line
 sub ecx, 16 // 16 QWORDS = 2 64-byte cache lines
 dec eax
 jnz prefetchloop

 mov eax, CACHEBLOCK / 8
writeloop:
 movq mm0, qword ptr [esi+ecx*8]
 movq mm1, qword ptr [esi+ecx*8+8]
 movq mm2, qword ptr [esi+ecx*8+16]

(code continues on next page...)

 2001 Advanced Micro Devices Inc. 7

 movq mm3, qword ptr [esi+ecx*8+24]
 movq mm4, qword ptr [esi+ecx*8+32]
 movq mm5, qword ptr [esi+ecx*8+40]
 movq mm6, qword ptr [esi+ecx*8+48]
 movq mm7, qword ptr [esi+ecx*8+56]

 movntq qword ptr [edi+ecx*8], mm0
 movntq qword ptr [edi+ecx*8+8], mm1
 movntq qword ptr [edi+ecx*8+16], mm2
 movntq qword ptr [edi+ecx*8+24], mm3
 movntq qword ptr [edi+ecx*8+32], mm4
 movntq qword ptr [edi+ecx*8+40], mm5
 movntq qword ptr [edi+ecx*8+48], mm6
 movntq qword ptr [edi+ecx*8+56], mm7

 add ecx, 8
 dec eax
 jnz writeloop
 or ecx, ecx
 jnz mainloop

 sfence
 emms

This code, using block prefetch and the MOVNTQ streaming store,
achieves an overall memory bandwidth of 1976 MB/sec, which is over 90%
of the theoretical maximum possible with DDR2100 memory.

That’s the end of the memory copy optimization study. It is clear that
block prefetch is a valuable optimization trick for boosting memory
read bandwidth. The next optimization study applies this trick to
code that does more than simply copy data.

 2001 Advanced Micro Devices Inc. 8

This next optimization series applies the techniques just explored, in
code that processes large arrays. An example which uses the X87
floating point unit is desirable, to illustrate the method for
switching between MMX mode (which is needed for MOVNTQ store
operations) and X87 FPU mode (which is used for the floating point
calculations).

This example shows how to add two arrays of double precision floating
point numbers together using the X87 FPU, and write the results to a
third array.

As a baseline, a slightly optimized “unrolled loop” version would be
something like this.

 bandwidth: ~950 MB/sec (baseline performance)

 mov esi, [src1] // source array one
 mov ebx, [src2] // source array two
 mov edi, [dst] // destination array

 mov ecx, [len] // number of Floats (8 bytes)
 // (assumes len / 8 = integer)

 lea esi, [esi+ecx*8]
 lea ebx, [ebx+ecx*8]
 lea edi, [edi+ecx*8]

 neg ecx

addloop:

 fld qword ptr [esi+ecx*8+56]
 fadd qword ptr [ebx+ecx*8+56]
 fld qword ptr [esi+ecx*8+48]
 fadd qword ptr [ebx+ecx*8+48]
 fld qword ptr [esi+ecx*8+40]
 fadd qword ptr [ebx+ecx*8+40]
 fld qword ptr [esi+ecx*8+32]
 fadd qword ptr [ebx+ecx*8+32]
 fld qword ptr [esi+ecx*8+24]
 fadd qword ptr [ebx+ecx*8+24]
 fld qword ptr [esi+ecx*8+16]
 fadd qword ptr [ebx+ecx*8+16]
 fld qword ptr [esi+ecx*8+8]
 fadd qword ptr [ebx+ecx*8+8]
 fld qword ptr [esi+ecx*8+0]
 fadd qword ptr [ebx+ecx*8+0]

 fstp qword ptr [edi+ecx*8+0]
 fstp qword ptr [edi+ecx*8+8]
 fstp qword ptr [edi+ecx*8+16]
 fstp qword ptr [edi+ecx*8+24]
 fstp qword ptr [edi+ecx*8+32]
 fstp qword ptr [edi+ecx*8+40]
 fstp qword ptr [edi+ecx*8+48]
 fstp qword ptr [edi+ecx*8+56]

 add ecx, 8
 jnz addloop

 2001 Advanced Micro Devices Inc. 9

Now skipping ahead to a fully optimized version, the code appears as
shown. The data is processed in blocks, as in the memory copy. But
to completely implement the fast data copy techniques and also use X87
FPU mode, the processing takes place in three distinct phases: block
prefetch, calculation, and memory write.

Why not two phases? Why not block prefetch the data in phase 1, then
process and write the data in phase 2? The reason is MOVNTQ. In order
to use MOVNTQ, the MMX registers must be used. Inside the processor,
the MMX registers are mapped onto the X87 FPU registers, and switching
between MMX mode and X87 FPU mode involves some time overhead. So for
maximum performance the X87 FPU operations are done in phase 2, writing
the results to an in-cache buffer. Then a third phase switches to MMX
mode and uses MOVNTQ to copy the in-cache buffer out to main memory.

This general technique is called three phase processing. If only a
small amount of phase 2 X87 FPU processing is needed, as in this
particular example, the technique provides performance that approaches
the optimized memory copy. As more FPU processing is required, memory
bandwidth becomes less of a limiting factor, and the technique offers
less advantage. So it must be used with discretion.

 bandwidth: ~1720 MB/sec improvement: 80% !

#define CACHEBLOCK 400h // number of QWORDs in a chunk
int* storedest
char buffer[CACHEBLOCK * 8] // in-cache temporary storage

 mov esi, [src1] // source array one
 mov ebx, [src2] // source array two
 mov edi, [dst] // destination array

 mov ecx, [len] // number of Floats (8 bytes)
 // (assumes len / CACHEBLOCK = integer)
 lea esi, [esi+ecx*8]
 lea ebx, [ebx+ecx*8]
 lea edi, [edi+ecx*8]

 mov [storedest], edi // save the real dest for later

 mov edi, [buffer] // temporary in-cache buffer...
 lea edi, [edi+ecx*8] // ... stays in cache from heavy use

 neg ecx

mainloop:

 mov eax, CACHEBLOCK / 16
 add ecx, CACHEBLOCK
prefetchloop1: // block prefetch array #1
 mov edx, [esi+ecx*8-64]
 mov edx, [esi+ecx*8-128] // (this loop is unrolled 2X)
 sub ecx, 16
 dec eax
 jnz prefetchloop1

(code continues on next page...)

 2001 Advanced Micro Devices Inc. 10

 mov eax, CACHEBLOCK / 16
 add ecx, CACHEBLOCK
prefetchloop2: // block prefetch array #2
 mov edx, [ebx+ecx*8-64]
 mov edx, [ebx+ecx*8-128] // (this loop is unrolled 2X)
 sub ecx, 16
 dec eax
 jnz prefetchloop2

 mov eax, CACHEBLOCK / 8
processloop: // this loop read/writes all in cache!
 fld qword ptr [esi+ecx*8+56]
 fadd qword ptr [ebx+ecx*8+56]
 fld qword ptr [esi+ecx*8+48]
 fadd qword ptr [ebx+ecx*8+48]
 fld qword ptr [esi+ecx*8+40]
 fadd qword ptr [ebx+ecx*8+40]
 fld qword ptr [esi+ecx*8+32]
 fadd qword ptr [ebx+ecx*8+32]
 fld qword ptr [esi+ecx*8+24]
 fadd qword ptr [ebx+ecx*8+24]
 fld qword ptr [esi+ecx*8+16]
 fadd qword ptr [ebx+ecx*8+16]
 fld qword ptr [esi+ecx*8+8]
 fadd qword ptr [ebx+ecx*8+8]
 fld qword ptr [esi+ecx*8+0]
 fadd qword ptr [ebx+ecx*8+0]

 fstp qword ptr [edi+ecx*8+0]
 fstp qword ptr [edi+ecx*8+8]
 fstp qword ptr [edi+ecx*8+16]
 fstp qword ptr [edi+ecx*8+24]
 fstp qword ptr [edi+ecx*8+32]
 fstp qword ptr [edi+ecx*8+40]
 fstp qword ptr [edi+ecx*8+48]
 fstp qword ptr [edi+ecx*8+56]

 add ecx, 8
 dec eax
 jnz processloop

 sub ecx, CACHEBLOCK
 mov edx, [storedest]
 mov eax, CACHEBLOCK / 8
writeloop: // write buffer to main mem
 movq mm0, qword ptr [edi+ecx*8+0]
 movq mm1, qword ptr [edi+ecx*8+8]
 movq mm2, qword ptr [edi+ecx*8+16]
 movq mm3, qword ptr [edi+ecx*8+24]
 movq mm4, qword ptr [edi+ecx*8+32]
 movq mm5, qword ptr [edi+ecx*8+40]
 movq mm6, qword ptr [edi+ecx*8+48]
 movq mm7, qword ptr [edi+ecx*8+56]
 movntq qword ptr [edx+ecx*8+0], mm0
 movntq qword ptr [edx+ecx*8+8], mm1
 movntq qword ptr [edx+ecx*8+16], mm2
 movntq qword ptr [edx+ecx*8+24], mm3
 movntq qword ptr [edx+ecx*8+32], mm4
 movntq qword ptr [edx+ecx*8+40], mm5
 movntq qword ptr [edx+ecx*8+48], mm6
 movntq qword ptr [edx+ecx*8+56], mm7
(code continues on next page...)

 2001 Advanced Micro Devices Inc. 11

 add ecx, 8
 dec eax
 jnz writeloop

 or ecx, ecx
 jge exit

 sub edi, CACHEBLOCK * 8 // reset edi back to start of buffer

 sfence // flush the write buffer when done
 emms // empty the MMX state

 jmp mainloop

exit:
 sfence
 emms

 2001 Advanced Micro Devices Inc. 12

Summary:

Block prefetch and three phase processing are general techniques for
improving the performance of memory-intensive applications on PCs. In
a nutshell, the key points are:

#1 To get the maximum memory read bandwidth, read data into the cache
in large blocks (e.g. 1K to 8K bytes), using block prefetch. When
creating a block prefetch loop:
 -- unroll the loop by at least 2X
 -- use the MOV instruction (not the Prefetch instruction)
 -- read only one address per cache line
 -- read data into an ALU scratch register, like EAX

-- read only one linear stream per loop
 -- to prefetch several streams, use a separate loop for each
 -- read cache lines in descending address order
 -- make sure all data is aligned

#2 To get maximum memory write bandwidth, write data from the cache to
main memory in large blocks, using streaming store instructions. When
creating a memory write loop:
 -- use the MMX registers to pass the data
 -- read from cache
 -- use MOVNTQ for writing to memory
 -- make sure the data is aligned
 -- write every address, in ascending order, without any gaps
 -- end with an SFENCE to flush the write buffer

#3 Whenever possible, code that actually “does the real work” should
be reading its data from cache, and writing its output to an in-cache
buffer. To enable this to happen, use #1 and #2 above.

Implementation detail note:

>>> Aligning “hot” branch targets to 16 byte boundaries can improve
speed, by maximizing the number of instruction fills into the
instruction-byte queue. This is especially important for short loops,
like a block prefetch loop. This wasn’t shown in the code examples,
for the sake of readability. It can be done with the ALIGN pragma,
like this:
 align 16
 prefetchloop:
 mov ebx, [esi+ecx*8-64]
 mov ebx, [esi+ecx*8-128]
 sub ecx, 16
 dec eax
 jnz prefetchloop

And remember: always benchmark your results, tweak until you get the
best performance, and test on all relevant platforms.

Good luck optimizing your code!

 2001 Advanced Micro Devices Inc. 13

 Appendix A. C++ Source Code Implementation of Block Prefetch

The block prefetch technique can be applied at the source code level.
This example uses C++, but it can be done in C or Fortran as well.

This code adds all the values in two large arrays of double precision
floating point numbers, to produce a double precision floating point
total.

Here is the ordinary, baseline C++ loop that does the job. It gets
about 1000 MB/sec on an AMD AthlonTMXP Processor 1800+ DDR machine:

 for (int i = 0; i < MEM_SIZE; i += 8) { // 8 bytes per double
 double summo += *a_ptr++ + *b_ptr++; // Reads from memory
 }

Now here is the same function, but optimized using Block Prefetch to
read the arrays into cache at maximum bandwidth. This Block Prefetch
code reads 4 Kbytes of data at a time. This version achieves over 1430
MB/sec on the same machine, more than a 40% improvement!:

static const int CACHEBLOCK = 0x1000; // prefetch block size (4K bytes)
int p_fetch; // this "anchor" variable helps to
 // fool the compiler’s optimizer

static const void inline BLOCK_PREFETCH_4K(void* addr) {
 int* a = (int*) addr; // cast as INT pointer for speed
 p_fetch += a[0] + a[16] + a[32] + a[48] // Grab every
 + a[64] + a[80] + a[96] + a[112] // 64th address,
 + a[128] + a[144] + a[160] + a[176] // to hit each
 + a[192] + a[208] + a[224] + a[240]; // cache line once.
 a += 256; // advance to next 1K block
 p_fetch += a[0] + a[16] + a[32] + a[48]
 + a[64] + a[80] + a[96] + a[112]
 + a[128] + a[144] + a[160] + a[176]
 + a[192] + a[208] + a[224] + a[240];
 a += 256;
 p_fetch += a[0] + a[16] + a[32] + a[48]
 + a[64] + a[80] + a[96] + a[112]
 + a[128] + a[144] + a[160] + a[176]
 + a[192] + a[208] + a[224] + a[240];
 a += 256;
 p_fetch += a[0] + a[16] + a[32] + a[48]
 + a[64] + a[80] + a[96] + a[112]
 + a[128] + a[144] + a[160] + a[176]
 + a[192] + a[208] + a[224] + a[240];
}

for (int m = 0; m < MEM_SIZE; m += CACHEBLOCK) { // process in blocks

 BLOCK_PREFETCH_4K(a_ptr); // read 4K bytes of “a” into cache
 BLOCK_PREFETCH_4K(b_ptr); // read 4K bytes of “b” into cache

 for (int i = 0; i < CACHEBLOCK; i += 8) {
 double summo += *a_ptr++ + *b_ptr++; // Reads from cache!
 }
}

 2001 Advanced Micro Devices Inc. 14

 2001 Advanced Micro Devices Inc. 15

Caution: Since the source-level prefetch code doesn't really "do"
anything from the compiler's point of view, there is a danger that it
might be entirely "optimized out" from the object code that is
generated! So the block prefetch function BLOCK_PREFETCH_4K uses a
trick to prevent that from happening. One value per cache line is read
as an INT to prefetch the data, the INTs added together (which is very
fast), and then they are assigned to a global variable. Now, the
integer sum isn’t really needed by the application, but this assignment
should "fool" the compiler's optimizer into actually compiling the
prefetch code intact. However, be aware that in general, compilers
might try to remove block prefetch code unless care is taken.

AMD, the AMD Arrow logo, AMD Athlon, and combinations thereof are
trademarks of Advanced Micro Devices, Inc.

MMX is a trademark of Intel Corporation.

