Using Block Prefetch for Optimized Memory Performance
Advanced M cro Devices
M ke wal
Menber of Technical Staff
Devel oper Performance Team

| nt roducti on

In recent years, clock speeds of X86 processors have risen rapidly.
Al so, the | atest processors can execute several instructions in a
single clock cycle. Wthout a doubt, today’s mai nstream CPUs have
hor sepower that was unattainable just a short tinme ago.

The main performance bottl eneck, for many applications, is no |onger
processor speed. It is nenory bandw dth.

New DRAM renory technol ogi es, such as DDR, have provided an increase in
raw menory bandwi dt h. How can applications take best advantage of
this increase? One answer is described in this docunent. It involves
two related ideas: block prefetch, and three phase processing.

Bl ock prefetch is a technique for reading bl ocks of data from nain
nmenory at very high data rates. Three phase processing is a
progranmm ng style that divides data into chunks which are read into
cache using bl ock prefetch, then operated on within the cache, then
results are witten out to nmenmory, all with high efficiency.

The techniques are relevant to applications that access | arge,

| ocal i zed data objects in systemnenory, in a sequential or near-
sequenti al manner. The basis of the techniques is to take best
advant age of the processor’s cache nenory.

This docunent will start with the nost basic and useful nenory
function: copying a block of data fromone area of nenory to anot her
This will be the vehicle for exploring the nain optimzation ideas.
Then the ideas will be applied to optimzing a bandwi dth-1imnted
function that uses the FPU to process |linear data arrays.

Note: These code sanples were run on an AVD At hl on™XP Processor 1800+
with CAS2 DDR2100 menory, and VI A KT266A chipset. Data sizes were
several negabytes, i.e. nuch larger than the cache. Exact performance
nunbers will be different on other platforns, but the basic techniques
can be widely applicable across the spectrumof current PCs. As wth
any optim zation project, be sure to benchmark the code on all rel evant
platforns, try different code variations to see what works best, and
confirmyour results.

0 2001 Advanced Micro Devices Inc.

The sinplest way to copy nenory is to use the REP MOVSB i nstruction

This is the automatic instruction provided by X86 for

menory copy.

bandwi dt h: ~620 MB/sec (basel i ne)
nov esi, [src] /'l source array
nov edi, [dst] /1 destination array
nmov ecx, [len] /1 nunber of QAORDS (8 bytes)
shl ecx, 3 /1 convert to byte count
rep novsb

That’'s the starting point.

i ncreasing the byte copy to

An obvious inprovenent to try is
a 4-byte copy. REP MOVSD does the job.

bandwi dt h: ~640 MB/ sec i mprovenent: 3%
nov esi, [src] /1 source array
mov edi, [dst] /1 destination array
nov ecx, [len] /1 nunber of QAORDS (8 bytes)
shl ecx, 1 /1 convert to DWORD count
rep novsd

That was a little inprovenent.

MOVS instructi

ons nmay not

be as efficient as an explicit

Now, on nodern processors, the REP
| oop which

uses sinpler “RISC' instructions.
executed in parallel

The sinple instructions can be
and someti nes even out-of-order, within the CPU

So next up is a loop which perforns the copy by using MOV instructions.
bandwi dt h: ~650 MB/ sec i mprovenent: 1.5%

nov esi, [src] /'l source array

nov edi, [dst] /1 destination array

nmov ecx, [len] /1 nunber of QAORDS (8 bytes)

shl ecx, 1 /1 convert to DWORD count
copyl oop:

mov eax, dword ptr [esi]

nov dword ptr [edi], eax

add esi, 4

add edi, 4

dec ecx

jnz copyl oop

[2001 Advanced Micro Devices Inc.

The expli
t hat expl

reduces the overhead of

cit loop was a tiny bit faster than REP MOVSD. Buil ding on
icit loop is the next optinmization: unrolling the | oop. Thi s
i ncrenenting the pointers and counter, and

reduces branchi ng.
is used, which runs just as fast as the sinple [Regi ster] address.

Al so,

the [Register + Offset] form of addressing

This is an unroll factor of 4X
bandwi dt h: ~640 MB/ sec i mprovenent: -1.5%
nmov esi, [src] /1 source array
nov edi, [dst] /1 destination array
mov ecx, [len] /1 nunber of QAORDS (8 bytes)
shr ecx, 1 /1 convert to 16-byte size count
/1 (assunes len / 16 is an integer)
copyl oop:
nov eax, dword ptr [esi]
nov dword ptr [edi], eax
nmov ebx, dword ptr [esi+4]
nmov dword ptr [edi+4], ebx
nmov eax, dword ptr [esi+8]
mov dword ptr [edi +8], eax
nov ebx, dword ptr [esi+12]
mov dword ptr [edi +12], ebx
add esi, 16
add edi, 16
dec ecx
jnz copyl oop

It’s not clear why the perfornance dropped a little when the | oop was
unrol l ed, but there’'s good news. The unrolled |oop presents an
opportunity to apply another optim zation trick: grouping reads

together, and wites together. This can nake the CPU s job easier, by
enabling it to conbine small cache data transfers into | arger ones.
bandwi dt h: ~660 MB/ sec i mprovenent: 3%

nov esi, [src] /'l source array

nov edi, [dst] /1 destination array

mov ecx, [len] /1 nunber of QAORDS (8 bytes)

shr ecx, 1 /1 convert to 16-byte size count
copyl oop:

nov eax, dword ptr [esi]

nov ebx, dword ptr [esi+4]

nmov dword ptr [edi], eax

nov dword ptr [edi+4], ebx

nov eax, dword ptr [esi+8]

nmov ebx, dword ptr [esi+12]

nov dword ptr [edi+8], eax

nov dword ptr [edi+12], ebx

add esi, 16

add edi, 16

dec ecx

jnz copyl oop

[2001 Advanced Micro Devices Inc.

Grouping the read and wite operations seenmed to hel p. Groupi ng can
be taken one step nore. The MW extensions, available on all nodern
X86 processors, provide eight large 64-bit registers that are ideal for
this purpose. They permt 64 bytes of sequential reading, followed by
64 bytes of sequential writing.

This exanple also introduces a hiased | oop counter, which starts
negative and counts up to zero; this allows the counter to serve double
duty as a pointer, and elimnates the need for a CMP instruction to
term nate the | oop.

bandwi dt h: ~705 MB/ sec i mprovenent: 7%
mov esi, [src] /1 source array
nmov edi, [dst] /1 destination array
nov ecx, [len] /1 nunber of QAORDS (8 bytes)

lea esi, [esi+ecx*8] [/ end of source
lea edi, [edi+ecx*8] [// end of destination

neg ecx /1 use a negative offset

copy!l oop:
nmovg mmD, gword ptr [esi+ecx*8]

novg nmmil, gword ptr [esi+ecx*8+8]
novg m2, gword ptr [esi+ecx*8+16]
movg mB, gword ptr [esi+ecx*8+24]

novq nnn: gword ptr [esi+ecx*8+32]

novg mmb, gword ptr [esi+ecx*8+40]
movg mmb, gword ptr [esi +ecx*8+48]
novg mmv, gword ptr [esi+ecx*8+56]
novg gword ptr [edi +ecx*8], nmo

novg gword ptr [edi +ecx*8+8], ml
nmovg gword ptr [edi +ecx*8+16], mP
novg gword ptr [edi +ecx*8+24], mmB
novg gword ptr [edi +ecx*8+32], Mm%
nmovg gword ptr [edi +ecx*8+40], mmb
novg gword ptr [edi +ecx*8+48], mmb
novg gword ptr [edi +ecx*8+56], mMmv

add ecx, 8
jnz copyl oop

enms /1 empty the MW state

[2001 Advanced Micro Devices Inc.

Now t hat the MW™ registers are being used, the code can enploy a very
special instruction: MWNTQ This is a stream ng store instruction,
for witing data to menory. This instruction bypasses the on-chip
cache, and sends data directly into a wite conbining buffer. And
because the MOVNTQ al l ows the CPU to avoid reading the old data from
the nmenory destination address, MOWNTQ can effectively double the total
write bandwi dt h. (note that an SFENCE is required after the data is
witten, to flush the wite buffer)

bandwi dt h: ~1130 MB/sec i mprovenent: 60%!!
nov esi, [src] /'l source array
mov edi, [dst] /1 destination array
nmov ecx, [len] /1 nunber of QAORDS (8 bytes)

lea esi, [esi+ecx*8]
lea edi, [edi+ecx*8]

neg ecx

copyl oop:
novg mmD, gword ptr [esi+ecx*8]

novg nml, gword ptr [esi+ecx*8+8]
nmovg mP, gword ptr [esi+ecx*8+16]
novg mB, gword ptr [esi+ecx*8+24]

novq nnn: gword ptr [esi+ecx*8+32]

nmovg mmb, gword ptr [esi+ecx*8+40]
novg mmbB, gword ptr [esi+ecx*8+48]
novg mv, gword ptr [esi+ecx*8+56]
novntq qword ptr [edi+ecx*8], nmo

movntq gword ptr [edi +ecx*8+8], nmil
novntq qword ptr [edi +ecx*8+16], nmR
nmovntq qword ptr [edi +ecx*8+24], mmB
movntq gword ptr [edi +ecx*8+32], mm
novntq qword ptr [edi +ecx*8+40], nmb
novntg qword ptr [edi +ecx*8+48], mb
movntq gword ptr [edi +ecx*8+56], mmv

add ecx, 8
jnz copyl oop

sfence
ems

[2001 Advanced Micro Devices Inc.

The MOVYNTQ instruction dramatically inproved the speed of witing the
data. Next is a faster way to read the data: a prefetch instruction
Prefetch can’t increase the total read bandwi dth, but it can get the
processor started on reading the data before it’'s actually needed. |If
prefetch does its job, then the data will already be sitting in the
cache when it’'s actually needed.

The automatic data prefetch function, sonetinmes called “hardware
prefetch”, can help also. |In fact, it’s already hel ping the
performance here. Hardware prefetch detects sequential ascendi ng
nmenory access patterns, and automatically initiates a read request for
the next cache line. But in highly optim zed code like this exanple, a
careful ly adjusted software prefetch instruction can often inprove read
bandwi dth even nore than the hardware prefetch al one.

bandwi dt h: ~1240 MB/ sec i mprovenent: 10%!
nmov esi, [src] /1 source array
mov edi, [dst] /1 destination array
nov ecx, [len] /1 nunber of QAORDS (8 bytes)

lea esi, [esi+ecx*8]
lea edi, [edi+ecx*8]

neg ecx
copy!l oop:
prefetchnta [esi+ecx*8 + 512] /1 fetch ahead by 512 bytes

novg mmD, gword ptr [esi+ecx*8]

nmovg mil, gword ptr [esi+ecx*8+8]
novg m2, gword ptr [esi+ecx*8+16]
novg mB, gword ptr [esi+ecx*8+24]

novq nnn: gword ptr [esi+ecx*8+32]

novg mmb, gword ptr [esi+ecx*8+40]
novg mmB, gword ptr [esi+ecx*8+48]
nmovg mv, gword ptr [esi+ecx*8+56]
movntq gword ptr [edi +ecx*8], nmo

novntq qword ptr [edi +ecx*8+8], nml
novntg qword ptr [edi +ecx*8+16], m®
movntq qword ptr [edi +ecx*8+24], mmB
novntq qword ptr [edi +ecx*8+32], nmi
novntg qword ptr [edi +ecx*8+40], mb
movntq qword ptr [edi +ecx*8+48], nmb
novntq qword ptr [edi +ecx*8+56], nmv

add ecx, 8
jnz copyl oop

sfence
enms

[2001 Advanced Micro Devices Inc.

Prefetch is clearly hel ping. At this point, a subtle but inportant
variation on the thenme can be used. It is called Block Prefetch. In
previ ous exanpl es, grouping reads together gave a boost to perfornance.
Bl ock prefetch is an extrene extension of this idea. The strategy is to
read a | arge stream of sequential data into the cache, w thout any

i nterruptions.

Significantly, the MOV instruction is used, rather than the software
prefetch instruction. Unlike a prefetch instruction, which is
officially only a “hint” to the processor, a MOV instruction cannot be
i gnored and nust be executed in-order. The result is that the nenory
system reads sequential, back-to-back address bl ocks, which yields the
fastest nmenory read bandwi dt h.

Because the processor always | oads an entire cache line (e.g. 64 bytes)
whenever it accesses nmain nenory, the prefetch | oop only needs to read
ONE address per cache line. Reading just one address per cache |ine
reduces pressure on the internal |oad/store queue, and is an inportant
part of achi eving maxi mumread performance in this extrenme case.

One additional trick is to read the cache lines in descendi ng address
order, rather than ascending order. This can inprove perfornmance a
bit, by keeping the processor’s hardware prefetcher fromissuing any
redundant read requests.

bandwi dt h: ~1976 MB/ sec i mprovenent: 59%! (up 300% vs. baseline)

#def i ne CACHEBLOCK 400h /1 nunber of QAMORDs in a chunk

nov esi, [src] /'l source array
nov edi, [dst] /1 destination array
mov ecx, [len] /1 total nunmber of QAORDS (8 bytes)

/1 (assunes |len / CACHEBLOCK = integer)

lea esi, [esi+ecx*8]
lea edi, [edi+ecx*8]

neg ecx
mai nl oop:
mov eax, CACHEBLOCK / 16 /1 note: prefetch loop is unrolled 2X
add ecx, CACHEBLOCK /1 nove up to end of bl ock

pr ef et chl oop:
nov ebx, [esi+ecx*8-64] [// read one address in this cache line..

nmov ebx, [esi+ecx*8-128] // ... and one in the previous line
sub ecx, 16 /1 16 QAMORDS = 2 64-byte cache lines
dec eax

jnz prefetchl oop

nov eax, CACHEBLOCK / 8

writel oop:
nmovg mmD, gword ptr [esi+ecx*8]
novg mil, gword ptr [esi+ecx*8+8]
novg mR, qword ptr [esi+ecx*8+16]

(code continues on next page...)

[2001 Advanced Micro Devices Inc. 7

movq
movq
movq
movq
movq

movnt g
movnt g
movnt q
movnt g
movnt g
movnt q
movnt g
movnt g

add e
dec e

nm8, qword

mm

m6
mm

gword
gwor d
gwor d
gword
gwor d
gwor d
gword
gwor d

cx, 8
ax

, gqword
mmb, qword
, gqword
, gqword

ptr
ptr
ptr
ptr
ptr
ptr
ptr
ptr

jnz witel oop

or e

jnz mainloop

sfence
enms

Thi s code,

achi eves an overal
of the theoretical

CX, ecX

ptr [esi+ecx*8+24]
ptr [esi+ecx*8+32]
ptr [esi+ecx*8+40]
ptr [esi+ecx*8+48]
ptr [esi+ecx*8+56]

edi
ed
ed
edi
ed
ed
edi
edi

+ecx* 8],

+ecx*8+8],
+ecx*8+16],
+ecx*8+24],
+ecx*8+32],
+ecx*8+40] ,
+ecx*8+48],
+ecx*8+56] ,

mrD
mmil
mr2
mr8
mm
mb
mrb
111174

usi ng bl ock prefetch and the MOVNTQ stream ng store

nmenory bandwi dth of 1976 MB/ sec,
nmaxi mum possi bl e with DDR2100 nenory.

whi ch is over

That’s the end of the nenory copy optimzation study. It is clear

bl ock prefetch is a valuable optimzation trick for

read bandw dt h.

code that does nore than sinply copy data.

boosti ng menory

The next optimzation study applies this trick to

[2001 Advanced Micro Devices Inc.

90%

t hat

This next optinization series applies the techniques just explored, in
code that processes large arrays. An exanple which uses the X87
floating point unit is desirable, to illustrate the method for
swi t chi ng between MMX node (which is needed for MOVNTQ store
operations) and X87 FPU node (which is used for the floating point

cal cul ations).

Thi s exanple shows how to add two arrays of double precision floating
poi nt nunbers together using the X87 FPU, and wite the results to a
third array.

As a baseline, a slightly optimzed “unrolled | oop” version would be
somet hing |ike this.

bandwi dt h: ~950 MB/ sec (basel i ne perfornmance)
mov esi, [srcl] /1 source array one
mov ebx, [src2] /1 source array two
nov edi, [dst] /1 destination array
nov ecx, [len] /1 nunber of Floats (8 bytes)
/1 (assunes len / 8 = integer)

lea esi, [esi+ecx*8]
| ea ebx, [ebx+ecx*8]
lea edi, [edi+ecx*8]

neg ecx
addl oop:
fld qgword ptr [esi+ecx*8+56
fadd qword ptr [ebx+ecx*8+56
fld qgword ptr [esi+ecx*8+48
fadd gword ptr [ebx+ecx*8+48
fld gword ptr [esi+ecx*8+40
fadd gword ptr [ebx+ecx*8+40
fld qgword ptr [esi+ecx*8+32
fadd gword ptr [ebx+ecx*8+32
fld gword ptr [esi+ecx*8+24
fadd gword ptr [ebx+ecx*8+24
fld qword ptr [esi+ecx*8+16
fadd gword ptr [ebx+ecx*8+16
fld qgword ptr [esi+ecx*8+8]
fadd gword ptr [ebx+ecx*8+8]
fld qgword ptr [esi+ecx*8+0]
fadd gword ptr [ebx+ecx*8+0]
fstp gword ptr [edi +ecx*8+0]
fstp gword ptr [edi +ecx*8+8]
fstp gword ptr [edi +ecx*8+16]
fstp gword ptr [edi +ecx*8+24]
fstp gword ptr [edi +ecx*8+32]
fstp gword ptr [edi+ecx*8+40]
fstp gword ptr [edi +ecx*8+48]
fstp gword ptr [edi +ecx*8+56]

add ecx, 8
jnz addl oop

[2001 Advanced Micro Devices Inc.

Now ski ppi ng ahead to a fully optinized version, the code appears as
shown. The data is processed in blocks, as in the nmenory copy. But
to conpletely inplenent the fast data copy techniques and al so use X87
FPU nmode, the processing takes place in three distinct phases: block
prefetch, calculation, and nenmory wite.

Wiy not two phases? Wiy not bl ock prefetch the data in phase 1, then
process and wite the data in phase 2? The reason is MOWNTQ In order
to use MOWNTQ the MMX registers nmust be used. Inside the processor,
the MW registers are napped onto the X87 FPU regi sters, and sw tching
bet ween MMX nbde and X87 FPU node invol ves some tinme overhead. So for
maxi mum perfornmance the X87 FPU operations are done in phase 2, witing
the results to an in-cache buffer. Then a third phase switches to MW
node and uses MOVNTQ to copy the in-cache buffer out to main nmenory.

This general technique is called three phase processing. If only a
snmal | anmpunt of phase 2 X87 FPU processing is needed, as in this
particul ar exanple, the techni que provi des perfornmance that approaches
the optim zed nenory copy. As nore FPU processing is required, nmenory
bandwi dt h becones less of a linmiting factor, and the techni que offers
| ess advantage. So it nust be used with discretion

bandwi dt h: ~1720 MB/ sec i mprovenent: 80%:!
#def i ne CACHEBLOCK 400h /1 nunber of QAORDs in a chunk

int* storedest
char buffer[CACHEBLOCK * 8] // in-cache tenporary storage

nmov esi, [srcl] /1 source array one
nmov ebx, [src2] /1 source array two
nov edi, [dst] /1 destination array
mov ecx, [len] /1 nunber of Floats (8 bytes)

/1 (assunes len / CACHEBLCCK = integer)
lea esi, [esi+ecx*8]
| ea ebx, [ebx+ecx*8]
lea edi, [edi+ecx*8]

nmov [storedest], edi // save the real dest for later

nov edi, [buffer] /1 tenporary in-cache buffer..
lea edi, [edi+ecx*8] // ... stays in cache from heavy use
neg ecx

mai nl oop:

nov eax, CACHEBLOCK / 16
add ecx, CACHEBLOCK
pref et chl oopl: /1 block prefetch array #1
nov edx, [esi+ecx*8-64]
nmov edx, [esi+ecx*8-128] /1 (this loop is unrolled 2X)
sub ecx, 16
dec eax
jnz prefetchl oopl

(code continues on next page...)

[0 2001 Advanced Micro Devices Inc. 10

nov eax, CACHEBLOCK / 16
add ecx, CACHEBLOCK
pr ef et chl oop2: /1 block prefetch array #2
mov edx, [ebx+ecx*8-64]
nov edx, [ebx+ecx*8-128] /1 (this loop is unrolled 2X)
sub ecx, 16
dec eax
jnz prefetchl oop2

nov eax, CACHEBLOCK / 8
processl oop: /1 this loop read/wites all in cache

fld gword ptr [esi+ecx*8+56
fadd gword ptr [ebx+ecx*8+56
fld qgword ptr [esi+ecx*8+48
fadd gword ptr [ebx+ecx*8+48
fld gword ptr [esi+ecx*8+40
fadd gword ptr [ebx+ecx*8+40
fld qgword ptr [esi+ecx*8+32
fadd gword ptr [ebx+ecx*8+32
fld qgword ptr [esi+ecx*8+24
fadd gword ptr [ebx+ecx*8+24
fld qgword ptr [esi+ecx*8+16
fadd gword ptr [ebx+ecx*8+16
fld qgword ptr [esi+ecx*8+8]
fadd gword ptr [ebx+ecx*8+8]
fld qgword ptr [esi+ecx*8+0]
fadd gword ptr [ebx+ecx*8+0]
fstp gword ptr [edi +ecx*8+0]
fstp gword ptr [edi +ecx*8+8]
fstp gword ptr [edi +ecx*8+16]
fstp gword ptr [edi+ecx*8+24]
fstp gword ptr [edi +ecx*8+32]
fstp gword ptr [edi +ecx*8+40]
fstp gword ptr [edi+ecx*8+48]
fstp gword ptr [edi +ecx*8+56]

add ecx, 8
dec eax
jnz processl oop

sub ecx, CACHEBLOCK
nov edx, [storedest]
nov eax, CACHEBLOCK / 8
writel oop: /1l wite buffer to main nem
novg mD, gword ptr [edi +ecx*8+0]

novg mil, gword ptr [edi +ecx*8+8]
novg m2, gword ptr [edi +ecx*8+16]
novg mmB, gword ptr [edi +ecx*8+24]

novq nnn: gword ptr [edi +ecx*8+32]

novg mb, gword ptr [edi +ecx*8+40]
novg mmb, gword ptr [edi +ecx*8+48]
novg mmv, gword ptr [edi +ecx*8+56]

novntg qword ptr [edx+ecx*8+0], mmD
movntq gword ptr [edx+ecx*8+8], nmil
novntq qword ptr [edx+ecx*8+16], nmR
novntg qword ptr [edx+ecx*8+24], mB
movntq gword ptr [edx+ecx*8+32], mmi
novntq qword ptr [edx+ecx*8+40], nmb
novntg qword ptr [edx+ecx*8+48], mb
movntq gword ptr [edx+ecx*8+56], nmmv
(code continues on next page...)

[2001 Advanced Micro Devices Inc.

add ecx, 8
dec eax
jnz witel oop

or ecx, ecx
jge exit

sub edi, CACHEBLOCK * 8 /] reset edi back to start of buffer

sfence // flush the wite buffer when done
ens /1l enpty the MW state

jmp mainl oop
exit:

sfence
ems

[2001 Advanced Micro Devices Inc.

12

Sumary:

Bl ock prefetch and three phase processing are general techniques for
i mprovi ng the performance of nmenory-intensive applications on PCs. In
a nutshell, the key points are:

#1 To get the maxi num nmenory read bandwi dth, read data into the cache
in large blocks (e.g. 1K to 8K bytes), using block prefetch. Wen
creating a block prefetch | oop

-- unroll the loop by at |east 2X

-- use the MOV instruction (not the Prefetch instruction)

-- read only one address per cache line

-- read data into an ALU scratch register, |ike EAX

-- read only one linear stream per |oop

-- to prefetch several streans, use a separate |oop for each

-- read cache lines in descendi ng address order

-- make sure all data is aligned

#2 To get maxi mum nmenory wite bandwidth, wite data fromthe cache to
main menory in |arge bl ocks, using stream ng store instructions. Wen
creating a nmenory wite | oop:

-- use the MW registers to pass the data

-- read from cache

-- use MOVNTQ for witing to nmenory

-- nmake sure the data is aligned

-- wite every address, in ascending order, wthout any gaps

-- end with an SFENCE to flush the wite buffer

#3 \Wienever possible, code that actually “does the real work” should
be reading its data fromcache, and witing its output to an in-cache
buffer. To enable this to happen, use #1 and #2 above.

| mpl enent ation detail note:

>>> Aligning “hot” branch targets to 16 byte boundaries can inprove
speed, by maxim zing the nunber of instruction fills into the
instruction-byte queue. This is especially inmportant for short | oops,
like a block prefetch loop. This wasn’t shown in the code exanples,
for the sake of readability. It can be done with the ALIGN pragnma
i ke this:
align 16
pr ef et chl oop:
nov ebx, [esi+ecx*8-64]
nov ebx, [esi+ecx*8-128]
sub ecx, 16
dec eax
jnz prefetchloop

And renenber: always benchmark your results, tweak until you get the
best perfornmance, and test on all relevant platforns.

Good | uck optim zing your code!

[0 2001 Advanced Micro Devices Inc. 13

Appendi x A. C++ Source Code | nplenentation of Block Prefetch

The bl ock prefetch technique can be applied at the source code |evel.
Thi s exanpl e uses C++, but it can be done in C or Fortran as well.

This code adds all the values in two |arge arrays of double precision
floating point nunbers, to produce a double precision floating point
total.

Here is the ordinary, baseline C++ |loop that does the job. It gets
about 1000 MB/sec on an ANVD At hl on™XP Processor 1800+ DDR machi ne:

for (int i =0; i <MEMSIZE, i +=8) { [/ 8 bytes per double
doubl e summ += *a_ptr++ + *b _ptr++; // Reads from nmenory
}

Now here is the sane function, but optinized using Block Prefetch to
read the arrays into cache at maxi num bandw dt h. This Bl ock Prefetch
code reads 4 Kbytes of data at a tine. This version achieves over 1430
MB/ sec on the sane nachine, nore than a 40% i nprovenent!:

static const int CACHEBLOCK = 0x1000; // prefetch block size (4K bytes)
int p_fetch; /1 this "anchor" variable helps to
/1 fool the conpiler’s optimzer

static const void inline BLOCK PREFETCH 4K(voi d* addr) {
int* a = (int*) addr; /1 cast as INT pointer for speed
p_fetch += a[0] + a[16] + a[32] + a[48] [// Gab every
+ a[64] + a[80] + a[96] + a[112] // 64th address,
+ a[128] + a[144] + a[160] + a[176] [/ to hit each
+ a[192] + a[208] + a[224] + a[240]; [/ cache |ine once

a += 256; /1 advance to next 1K bl ock

p_fetch += a[0] + a[16] + a[32] + a[48]
+ a[64] + a[80] + a[96] + a[112?]
+ a[128] + a[144] + a[160] + a[176]
+ a[192] + a[208] + a[224] + a[240];

a += 256;

p_fetch += a[0] + a[16] + a[32] + a[48]
+ a[64] + a[80] + a[96] + a[1l12]
+ a[128] + a[144] + a[160] + a[176]
+ a[192] + a[208] + a[224] + a[240];

a += 256;

p_fetch += a[0] + a[16] + a[32] + a[48]
+ a[64] + a[80] + a[96] + a[1l12]
+ a[128] + a[144] + a[160] + a[176]
+ a[192] + a[208] + a[224] + a[240];

}
for (int m=0; m< MEM SIZE, m += CACHEBLOCK) { // process in bl ocks

BLOCK_PREFETCH 4K(a_ptr); // read 4K bytes of “a” into cache
BLOCK PREFETCH 4K(b_ptr); [// read 4K bytes of “b” into cache

for (int i =0; i < CACHEBLOCK; i += 8) {
doubl e summo += *a ptr++ + *b ptr++; // Reads from cache!
}

[0 2001 Advanced Micro Devices Inc. 14

Caution: Since the source-level prefetch code doesn't really "do"
anything fromthe conpiler's point of view, there is a danger that it
m ght be entirely "optim zed out”™ fromthe object code that is

gener at ed! So the bl ock prefetch functi on BLOCK PREFETCH 4K uses a
trick to prevent that from happening. One value per cache line is read
as an INT to prefetch the data, the I NTs added together (which is very
fast), and then they are assigned to a global variable. Now, the
integer sumisn’t really needed by the application, but this assignnent
should "fool" the compiler's optimzer into actually conpiling the
prefetch code intact. However, be aware that in general, conpilers
mght try to renove bl ock prefetch code unless care is taken

AMD, the AMD Arrow | ogo, AMD At hl on, and conbi nati ons thereof are
trademar ks of Advanced M cro Devices, Inc.

MW is a trademark of Intel Corporation

[2001 Advanced Micro Devices Inc. 15

